中科大首次利用人工智能实现多重非经典关联的同时分类

中科大首次利用人工智能实现多重非经典关联的同时分类
2019年11月13日 01:10 新浪网 作者 中安在线

中安在线、中安新闻客户端讯 记者从中国科学技术大学获悉,该校郭光灿院士团队在人工智能与量子力学基础研究交叉领域取得重要进展。该实验室李传锋、许金时等人与南方科技大学翁文康教授以及中科院重庆绿色智能技术研究院任昌亮研究员等人合作,将机器学习技术应用于研究量子力学基础问题,首次实验实现了基于机器学习算法的多重非经典关联的同时分类。该成果于11月6日发表于国际物理学权威期刊《物理评论快报》上。

  机器学习是人工智能的一个重要的分支,通过一系列的训练数据来得到一个可输出预测结果的函数或模型。李传锋、许金时等人将机器学习技术应用于非经典关联的区分,首次实验实现了多重量子关联的同时分类。他们通过巧妙的实验设计,在光学系统中制备出一簇参数可调的两比特量子态。通过只输入量子态的部分信息(两个可观测量的值),利用神经网络、支持向量机以及决策树等机器学习模型对455个量子态的非经典关联属性进行学习,成功地实现了多重非经典关联分类器。实验结果表明基于机器学习算法的分类器能以大于90%的高匹配度同时识别量子纠缠、量子导引和贝尔非定域性等不同的量子关联属性,而且无论在资源消耗还是时间复杂度上都远小于传统判据所依赖的量子态层析方法。

  量子信息与人工智能的融合是当前最热门的研究方向之一,已经取得很多重要进展。这项工作在实验上将机器学习算法应用于多重非经典关联的同时区分,推动了人工智能与量子信息技术的深度交叉。未来,机器学习作为一种有效的分析工具,将有助于解决更多量子科学难题。(记者 聂静洁)

特别声明:以上文章内容仅代表作者本人观点,不代表新浪网观点或立场。如有关于作品内容、版权或其它问题请于作品发表后的30日内与新浪网联系。

中安在线

中安在线

安徽新闻门户,关注安徽人和事。

+关注
作者文章