新浪新闻客户端

LK-99“室温超导”假象源自Cu2S一级结构相变 | 中国物理学会期刊网

LK-99“室温超导”假象源自Cu2S一级结构相变 | 中国物理学会期刊网
2024年03月18日 20:03 新浪网 作者 中科大胡不归

  |作者:朱世林1 吴伟1,2,† 李政1,2 雒建林1,2,††

  (1 中国科学院物理研究所)

  (2 中国科学院大学物理科学学院)

  本文选自《物理》2024年第2期

  1

  引 言

  超导体具有零电阻和完全抗磁性(迈斯纳效应)两个特征,可用于电力传输、超导磁悬浮、核聚变等能源领域。此外,超导是一种宏观量子现象,可以用于量子计算、量子通讯等信息领域。自1911年第一个超导体被发现以来,超导体临界温度(Tc)从最初的液氦温区提升到了液氮温区,已发现的常压下最高Tc的超导体是HgBa2Ca2Cu3O8+xTc约134 K[1]。然而目前已知的常压下超导体的Tc都远低于室温,这极大限制了超导材料的应用。2023年7月22日韩国高丽大学Sukbae Lee等人声称在常压下铜掺杂的铅磷灰石中观测到Tc为127℃(400 K)的超导转变[2-4],其化学式为Pb10-xCux(PO4)6O (0.9x[5-8]。因此LK-99的提出不仅受到科研工作者的关注,也吸引了众多社会人士的讨论,并且在社交媒体上被广泛报道。

  随后,若干科研团队尝试重复LK-99的实验,有多个LK-99悬浮视频在社交媒体上流传,但没有任何科研团队观测到完全抗磁性和零电阻行为[9-12]。有一些团队在几十微米的样品中观测到半磁悬浮现象,他们认为这可能与超导体中的迈斯纳效应有关,但由于样品过小,无法测量其电阻。而另外一些团队对半悬浮现象给出了理论分析,认为这些现象和超导电性无关。虽然不同研究组制备样品的物性各不相同,但是LK-99中电阻陡降的行为一直未被复现,而对LK-99电阻陡降行为的重复是判断其是否为超导体的关键。

  2

  数据猜测

  韩国团队论文中提及的XRD数据表明LK-99中有Cu2S杂质,因其含量不到10%而被忽视。然而超导探索中很多类似超导转变的行为都是杂质引起,因此对杂质的分析是排除假象的关键一步。根据文献报道,离子导体Cu2S在400 K附近有一个从高温六角相转变为低温单斜相的相变[13-15],Cu2S的电导以及热膨胀系数在这个相变温度会发生明显的变化,因此LK-99的电阻陡变行为可能是杂质Cu2S导致。之前的文献没有Cu2S详细的升降温电阻率数据,因此我们团队将99.5%纯度的Cu2S粉末冷压成片,用标准四电极法测量其电阻率。图1的测量结果表明,Cu2S的电阻率在400 K附近确实存在一个陡峭的跳变,电阻率从高温到低温减小超过3个数量级。这个电阻陡降行为貌似超导转变,并且相变温度与LK-99的电阻率陡降温度接近[16]。升温和降温的电阻率实验曲线显示,相变有约10 K的迟滞行为,说明这是一级相变。虽然Cu2S电阻率下降超过3个数量级,但并未达到零电阻,并且在低温区,电阻随温度降低逐渐变大。Cu2S的电阻行为使我们猜测,在LK-99中的类似超导转变可能源于其杂质Cu2S的结构相变导致的电阻率骤降。

  图1 对数坐标下Cu2S电阻率随温度的变化关系。电阻率在400 K相变附近变化超过3个数量级。升降温曲线在相变温度不重合,有明显迟滞,说明此相变是一级相变。相变后电阻率不为零,而是保持一个有限值。插图为线性坐标下Cu2S电阻随温度的变化关系,因为电阻变化几个数量级,所以画成线性坐标后电阻率变化和超导相变很像[16]

  3

  实验设计

  为了判断Cu2S对LK-99的影响,我们制备了两种Cu2S含量的LK-99:S1(含Cu25%)和S2(含Cu270%)。如图2所示,所有样品的电阻率都有一级结构相变特有的热迟滞行为,相变温度均在400 K附近。S1样品是绝缘体,在低温下,电阻率已经超过仪器的量程范围。在纯Cu2S和S2中,400 K附近的电阻率行为和超导相变相似,转变温度区间很窄。S2样品在相变处电阻率下降达到70%,而且在100 K到相变温区,电阻率行为表现出金属行为,在100 K以下才慢慢表现出半导体行为。图2(b)和(d)为S2和S1样品在相变温度附近的放大图,从图中也能看出,这两个样品以及纯Cu2S的相变温度并非完全重合,也说明Cu2S在LK-99中的性质会受到一定的影响,可能来源于Cu2S中S含量的差别。在S2样品中的电阻转变与韩国团队报道的LK-99的转变极其类似,完全重复了韩国团队关于电阻陡降的实验现象。

  图2 (a)S2样品电阻率随升降温的变化关系,插图为对数坐标下电阻率和温度的对应关系;(b)S2样品相变附近放大图,此图和LK-99在400 K左右的行为基本一致;(c)S1样品电阻率随升降温的变化关系,整体表现出绝缘体行为,说明纯的LK-99应该更绝缘;(d)S1样品相变附近的放大图[16]

  磁化率数据也说明这个混合物是一个抗磁性材料[15]。如图3(a)所示,在1 T下磁化率随温度(MT)的升降温曲线显示S2在2—400 K都是抗磁行为,且在380 K能看到明显的相变,而且具有迟滞,再次确认这是一个一级相变,而且温度范围也对应于Cu2S的结构相变温度[15]。如图3(b)所示,磁化强度随磁场(MH)的曲线也表明M在第二和第四象限是标准的抗磁行为,磁场越大,抗磁性的行为越强。而第二类超导体在更高的磁场下,抗磁行为会减弱,最终完全变为零,S2样品的这些性质和超导体不同。

  图3 (a)S2样品的MT曲线,在380 K能看到明显的一级相变,右上角小图是相变附近的局部放大图;(b)S2样品MH曲线,磁场越强,抗磁性的行为越明显。这些普通抗磁材料的性质和超导体的迈斯纳抗磁行为完全不同[16]

  综上所述,对比纯Cu2S以及包含不同比例的Cu2S的LK-99电阻率,发现韩国小组在LK-99中的类超导行为和Cu2S在400 K附近的电阻行为极为相似。与超导体的不同之处在于在400 K附近有升降温的热迟滞行为。超导相变是二级相变,在相变温度不会出现热迟滞行为,而只有一级相变才会有热迟滞。通过电阻和磁化率精密测量结果判断:在LK-99中的类似超导行为起源于Cu2S的一级结构相变引起的电阻率下降[16]

  4

  后 记

  韩国团队合成LK-99的反应中产物不唯一:合成1份铜掺杂铅磷灰石(纯LK-99),会同时产生17份铜和5份硫。这些残留物会导致大量杂质,尤其是韩国团队报道的样品中存在Cu2S。为了得到没有Cu2S的LK-99,8月14日,德国Max-Planck固态研究所的一个团队报道合成了纯的单晶LK-99。与之前需要用到坩埚的合成方法不同,该团队采用浮区法晶体生长技术,不需要在反应中加入硫,可以避免Cu2S杂质的产生。最终得到透明的纯LK-99紫色晶体,化学式为Pb8.8Cu1.2P6O25。分离了杂质的LK-99不是超导体,而是具有百万欧姆电阻的绝缘体。由于电阻过高,无法进行标准的电导率测量。纯LK-99晶体在较大的抗磁背景上表现出很小的铁磁性。该团队在结论中表示,“排除了存在超导性的可能。”另外该团队指出,LK-99中观察到的超导现象要归因于Cu2S杂质,而他们的晶体中没有这种杂质[17]

  判断一个材料是超导体的判据是这个材料具有零电阻和完全抗磁性。对电阻率急速下降和半悬浮的解释,以及纯的Pb8.8Cu1.2P6O25单晶的实验结果[16-19],充分证明LK-99不具有零电阻和完全抗磁性,并非室温超导体。这个结论打破了对于LK-99是首个室温常压超导体的希望。此次事件的起因是Cu2S的一级结构相变被误认为超导转变,之后众多团队合作使其在短时间内得到澄清,这为今后的科研工作提供了很好的范例。去伪才能存真,可以避免在错误的方向上浪费资源和精力,让科学研究保持在重要的方向上。

  参考文献

  [1] Kazakov S MItskevich E SBogacheva L N. Jetp. Lett.199358343

  [2] Lee SKim JIm S et al. Journal of the Korean Crystal Growth and Crystal Technology20233361

  [3] Lee SKim J HKwon Y W. The First Room-Temperature Ambient-Pressure Superconductor. 2023arXiv2307.12008

  [4] Lee SKim JKim H T et al. Superconductor Pb10-xCux(PO4)6O Showing Levitation at Room Temperature and Atmospheric Pressure and Mechanism. 2023arXiv2307.12037

  [5] Bednorz J GMüller K A. Z. Physik B - Condensed Matter198664189

  [6] Gao LXue Y YChen F et al. Phys. Rev. B1994504260

  [7] Drozdov A PEremets M ITroyan I A et al. Nature201552573

  [8] Kong PMinkov V SKuzovnikov M A et al. Nat. Commun.2021125075

  [9] Wu HYang LXiao B et al. 2023arXiv2308.01516

  [10] Liu LMeng ZWang X et al. Advanced Functional Materials2023332308938

  [11] Kumar KKarn N KAwana V P S. Superconductor Science and Technology20233610

  [12] Hou QWei WZhou X et al. Matter202364408

  [13] Hirahara E. J. Phys. Soc. Jpn.19516422

  [14] Nieroda PLeszczyński JMikuła A et al. Ceramics International20204625460

  [15] Chakrabarti D JLaughlin D E. Bulletin of Alloy Phase Diagrams19834254

  [16] Zhu S LWu WLi Z et al. Matter202364401

  [17] Guo KLi YJia Sh. Science China PhysicsMechanics & Astronomy.202366107411

  [18] Puphal PAkbar M Y PHepting M et al. APL Mater.202311101128

  [19] Timokhin IChen CWang Z et al. 2023arxiv2308.03823

特别声明:以上文章内容仅代表作者本人观点,不代表新浪网观点或立场。如有关于作品内容、版权或其它问题请于作品发表后的30日内与新浪网联系。
来自于:安徽
权利保护声明页/Notice to Right Holders

举报邮箱:jubao@vip.sina.com

Copyright © 1996-2024 SINA Corporation

All Rights Reserved 新浪公司 版权所有